

The Secret to Building IP at the Cutting Edge

John G. Maneatis, Ph.D. President, True Circuits, Inc. June 21, 2017

DAC 2017 IP/Design Track - Copyright © 2017 True Circuits, Inc. All Rights Reserved

The Secret:

it's maximizing reuse !

The Dilemma

I need it customized for these 3 applications, and I need this metal stack and process variant.

But I need to sell the same thing N times to make money.

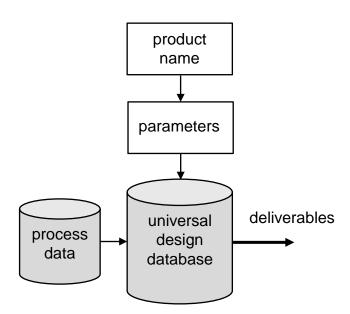
Plus, you've buying IP to reduce time and risk.... customization adds time and risk!

Answer: Reuse and Configurability

- Standardize everything
- Single database: all data in one place
 - Use parameters to describe everything
 - Tools build from universal templates
 - Target design type, process, metal, Vts, etc.
- Outgoing simulation and QA to insure quality
- Porting effort focuses on key challenges at the cutting edge
- Customize at the margins, with automation

Overall Strategy

Circuit strategy


- Understand the key challenges at the new node
- Address these challenges with robust and flexible circuits
- Automated sizing and retargeting tools simplify the job
- CAD environment
 - Custom and highly integrated
- Simulation, layout and lab characterization follow suit

Personnel

- Requires versatile designers with programming skills
- Automate repeatable tasks and design "at the margins"

Why the CAD Environment is Key

- I have a passion for CAD
- Controlling the tools is key to supporting multiple designs and processes
- Custom CAD used for
 - Describing, specifying, modeling and simulating designs
 - Creating front and back-end views
 - Packaging designs and documentation
 - Lab testing and report generation
- Parameters drive everything
 - All tools and flows
 - Models and documentation
 - Linked to product names
- IP is "correct by construction"

Descriptions and Flows

Languages used to describe things allow embedded C to

- Support parameterization
- Minimize descriptions for repetitive items
- Maximize reuse of description elements
- Everything can be generated from command line
- Flows built on one another to allow complete designs to be created from product names
- Example: Configurable ring oscillator

```
xr1 vo[num:1] vdd vss ring(size)
.subckt ring(s=1) vo[n:1] vdd vss
:int i, j;
:for (i = 1, j = n; i <= n; j = i++) {
    xi[i] vo[j] vo[i] vdd vss inv(s)
:}
.ends ring</pre>
```

Custom vs. Commercial CAD Tools

- Having custom CAD tools helps, but is not essential to our strategy
- Many of the things that I will describe can be accomplished with commercial CAD tools
- The key is in the scripting, added layers of abstraction, and standardization applied to the CAD tools
- Some tools will make it easier than others
- We chose to use custom tools for most functions to give us
 - More flexibility
 - Access to core behavior
 - Equivalent of site licenses

Robust Base IP Foundation

► Use rich library of process insensitive circuits to achieve

- Adaptive bandwidth
- Self training
- Matched timing by construction
- Design to operate over wide ranges
- Pin programmable for customer flexibility

Design Libraries

- Unified database containing
 - Basic gates
 - Programmable datapath blocks (adders, multipliers, shifters, etc.)
 - Programmable higher-level structures (fractional dividers, etc.)
 - Complete IP blocks
- Process independent
- Options for different design targets (speed/power)
- Customization done with reusable sub-blocks
 - Can control features with parameters
- Can represent any design shipped (all versions)

Front-End Design Tools

- Universal database representation
 - Parameter driven, process independent
 - Incorporates information for automated characterization
- Powerful netlist processing, including synthesis
- Generate many views: circuit, logic, characterization, placement
- Parameter driven characterization environment
 - Setup to perform any measurements that can be imagined
 - Uses large number of processors in server farm
 - Reduces data for easy analysis and creates reports

Front-End Design Tools (Cont.)

- Simulation tool supports
 - Mixed mode simulations (logic, circuit, behavioral, Verilog A)
 - Delay modeling with back annotated parasitics
 - ► Transient noise analysis
- Timing verification tool supports
 - Statistical timing analysis
 - Arbitrary clock domains
 - Structural checks
 - Interactive environment
 - Automatic characterization of cell libraries

Back-End Design Tools

- Berkeley Magic-based layout editor with powerful additions
- Directed synthesis allows equations of signals and buses
- Place and route (analog and digital)
 - Uses placement hints coded in netlist
 - Placement and routing are repeatable, independent of technology
- Layout re-mapping
 - Allows structures to be mapped to a different set of design rules
- Global routing
- Universal layout manipulation tools for block assembly
 - Perform logic operations on layers or create special layers
 - Perform options and re-sizing
 - Generate structures (equivalent to P-cells, etc.)

Lab Testing

- Fully automated lab characterization environment
 - Setup to drive all equipment (DUT, sources, scopes, environment)
 - Controlled by scripts that are parameter driven from chip ID
- Can be used interactively or in batch mode
- Can be run remotely
- Lab characterization software leverages simulation environment
 - Common data representation format
 - Common characterization functions (e.g. measuring jitter)
- Setup to automatically generate test reports

Maintenance

- Goal is to make it very easy to maintain designs
 - Because knowledge is in design databases and tools, it is very easy for user to perform operations without specific knowledge of the particular design
- Unified design representation makes it easy to incorporate fixes, improvements, etc. on all related designs

Conclusion

The business goals

- IP suppliers: amortize design investments
- IP customers: reduce risk and save time

Technical goals

Maximize reuse using a custom CAD environment

How it's done

- Use robust and flexible circuits
- Incorporate design and characterization information in design
- Make maintenance easier using unified design specifications

Challenges

- Controlling the CAD tools
- Finding personnel who can design at the margin